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Effective Personalized Search With Heterogeneous
Graph Based Hawkes Process
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Yujing Gao , Fusheng Jin , and Guoren Wang

Abstract—Personalized search aims at re-ranking search results
with reference to users’ background information. The state-of-the-
art personalized search methods often consider both the short-term
search interests from current session behaviors and the long-term
search interests from previous session behaviors. However, ses-
sions in real-world search scenarios are usually very short, and
a large number of sessions contain only one query, which makes
it difficult to model short-term search interests. Intuitively, apart
from current session behaviors, some recent historical session be-
haviors could also contribute to the current search interests, and
the influence of these behaviors typically decays over time. Based
on this intuition, we propose a novel heterogeneous graph based
Hawkes process to improve the effectiveness of personalized search.
Specifically, we first construct a heterogeneous graph to model
multiple relations between users, queries, and documents. Then,
we propose a heterogeneous graph neural network based algorithm
to encode the representations of users’ historical search behaviors.
After that, we develop a multivariate Hawkes process to capture the
influence of historical search behaviors on the current search intent.
Our approach can dynamically model the influence of historical
behaviors in a continuous time space. Thus, both the current session
behaviors and the historical session behaviors can be utilized to
characterize a more accurate current search intent. We evaluate
our method using three real-life datasets, and the results show
that our approach significantly outperforms the state-of-the-art
methods in terms of several widely-used precision metrics.

Index Terms—Hawkes process, heterogeneous graph, person-
alized search.

I. INTRODUCTION

S EARCH engine is an important tool for information re-
trieval. Apparently, for a search engine, returning the same

set of results to different users is not sensible, because individ-
uals could have diverse search intents even though they issue
the same query. As a result, tailoring the search result based on
the user’s personal search interest is an effective approach to
improving users’ search experience.
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In the literature, there exist a large number of methods that
are proposed to extract users’ search interests. Traditional meth-
ods [1] mainly aim to extract explicit features in search behav-
iors. Recent deep learning-based methods [2], [3], [4], [5], [6],
[7], [8], [9], [10], however, aim to learn users’ search interests via
deep neural network models. The candidate documents in the re-
turned list are re-ranked based on the relevance to the user’s pro-
file. Due to the powerful expressive ability of the deep neural net-
work models, these deep learning-based methods have been rec-
ognized as the state-of-the-art solutions for personalized search.

In real search scenarios, a user’s current search intent is often
closely related to their historical search behaviors. Therefore,
utilizing the temporal features in search behavior is important
for personalized search. Existing methods [3], [4], [8], [11]
have utilized previous session behaviors and current session
behaviors for learning long-term and short-term search interests,
respectively. However, in real scenarios users are not always
likely to issue a series of queries in a session. As we observed in
a recently-collected mobile search dataset from WeChat, more
than half of the sessions contain only one query, which hampers
existing methods from accurately modeling short-term search
interests. To address the above problem, we argue that short-term
search interests should not be limited to the current session. For
example, a user may repeatedly search the result of games during
the Beijing Winter Olympics in a number of sessions, and after
the event closes, their interest in the Olympics gradually decays.
In this case, although their behaviors spread in various sessions,
they are more likely to reflect the user’s short-term search interest
in a period of time. In fact, this kind of phenomenon is common
when a user has information need for some breaking news or hot
topics. Their interest is excited by the events instantaneously,
but decays over time. In this paper, different from all existing
methods, we do not explicitly partition the user’s search history
into current and previous session behaviors by specific criteria.
Instead, we make use of the Hawkes process [12] to model the
influence of previous behaviors in a continuous time space.

The Hawkes process [12], which is a kind of temporal point
process that can capture the time dependencies in discrete event
sequences, is especially excellent at modeling the influence of
previously happened events on the occurrence of a future event.
Some popular methods for learning time series data, such as
recurrent neural networks and Transformer [13], only consider
the order of the event sequence, but ignore the interval between
two events. Unlike these methods, hawkes process utilize times-
tamps to model temporal influences, thus can reap the benefits
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from both orders and intervals. The vanilla Hawkes process
oversimplifies the complex dynamics in point process [14],
which hampers it from accurately modeling real-world events.
Recently, the so-called neural Hawkes process [14], [15], [16]
endows Hawkes process with more powerful expressive ability.
However, the neural Hawkes process is a general framework for
modeling event sequences [14], [15], [16], which is nontrivial to
adopt it to handle specific domains [17], [18], [19] and also has
not yet been used to model users search behaviors. To fill this
gap, in this paper, we propose a neural Hawkes process to model
users’ evolving search intents so as to improve the performance
of personalized search.

Although the Hawkes process can well model the influence
of historical behaviors, how to effectively represent users’ het-
erogeneous search behaviors is still a nontrivial problem, For
example, “issuing a query” and “clicking a document” are two
major behaviors, representing two types of relations between
user and query as well as between user and document. We argue
that query reflects the user’s search intent, while ”click” reflects
that the user finds relevant information. Differentiating these
two behaviors can provide a more comprehensive view on user’s
search interest. Furthermore, documents clicked under the same
query and queries with similar returned documents often exhibit
similar content features [7], which can be modeled as graphs
to enhance their representations. Prior studies [1], [8] have
also demonstrated that similar users are beneficial for modeling
search interests, particularly when search history is limited.
Formulating the relations between users with graphs could better
alleviate the cold-start problem. Therefore, to more effectively
capture users’ search behaviors, we propose a heterogeneous
search graph to model those complicated and multiple types of
relations. Based on this heterogeneous search graph, we present
a heterogeneous graph neural network based method for learning
query-specific representations of the search behaviors. Armed
with those representations, we develop a multivariate Hawkes
process to model users’ dynamic search intents, which will be
used for improving personalized search.

The main contributions of this paper are summarized as
follows. (1) We propose a heterogeneous search graph model
to encode the multiple types of relations in search behaviors
and a query-specific heterogeneous graph neural network algo-
rithm to learn the representations of users’ search behaviors.
(2) We present a multivariate Hawkes process to model the
evolving process of a user’s search intent based on their historical
search behaviors. To our knowledge, this is the first time that
the Hawkes process is used to study the dynamic influence
of long-term and recent behaviors in personalized search. (3)
We conduct extensive experiments on three real-world datasets,
which validate the effectiveness and superiority of our method.

II. RELATED WORKS

A. Personalized Search

Traditional methods: Personalized search has been widely
studied in the literature. Traditional methods, such as [1], [20],
focus on extracting click features from history logs. For example,
SLTB [11] extracts multiple statistic features from search history
and studies the benefits of these features to personalized search.

The Open Directory Project (ODP) [21], [22] contains the classi-
fication of large numbers of websites, which can be utilized as the
website features for personalized web search, but such a program
is difficult to maintain with the increasing number of websites,
thus automatically extracting features from documents is a better
choice. Many studies [23], [24], [25] use the Latent Dirichlet
Allocation (LDA) algorithm [26] to extract topic features in the
documents and queries, which is then utilized for predicting the
relevance between documents and queries.

Deep learning based methods: Recently, deep learning-based
approaches have been widely applied to personalized search.
Song et al. [27] studied the application of the Ranknet [28]
on personalized search, which is a neural network trained for
matching query and url pairs. More recent methods mostly adopt
sequence models, such as RNNs [29] and Transformers [13],
to model users’ historical behavior. For example, Ge et al. [3]
proposed a hierarchical RNN to generalize user profile from
historical data. Moreover, a query-aware attention model is
proposed to dynamically construct user profiles based on current
queries. Zhou et al. [4] proposed to learn context-aware repre-
sentation of current query to improve ranking quality. Their tech-
nique comprises two hierarchical transformer models, namely
the query disambiguation model and the personalized language
model, aiming to disambiguate the query based on its words and
historical behaviors. Beyond sequential models, Lu et al. [6] con-
ducts personalized entity linking on queries to enhance search
intent representations, and construct knowledge-enhanced user
profiles using memory networks to store predicted search intents
and linked entities from search histories.

Apart from explicitly establishing user profiles, some meth-
ods implicitly utilize user background or various signals from
search behaviors. Yao et al. [5] acknowledged the ambiguity
and varying interpretations of words in queries stems from the
different backgrounds of users. Hence, it incorporates personal
word embeddings trained from users’ search history, to improve
the modeling of query intent. Zhou et al. [30] studied the effects
of re-finding behaviors in personalized search with Hierarchical
Memory Networks. The method explores re-finding behavior
from granularity and query intent. From granularity aspects,
it considers re-finding at word, sentence, and session levels.
From query intent aspects, it incorporates both query-based and
document-based re-finding to accommodate different user query
intents. Yao et al. [31] proposed active learning based methods
to enhance the selection of labeled samples with historical eval-
uation results. In the work conducted by Lu et al. [2], adversarial
training [32] is utilized for personalized search. Their approach
involves the utilization of a generator designed to create a
negative document to deceive the discriminator. Simultaneously,
the discriminator is trained to differentiate between positive and
negative documents. Unlike all these mentioned methods, we
study personalized search from a novel view by coupling the
heterogeneous graph and the Hawkes Process.

B. The Hawkes Process

The Hawkes Process [12] is a temporal point process (TPP)
which assumes that historical events should have positive
excitation effects on the occurrence of future events. This
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excitation effect is modeled by the conditional intensity func-
tion. Although the vanilla Hawkes process has been applied to
many fields, the major limitation is that its conditional intensity
function is too simple to capture many complicated real-world
time dependencies. To address this problem, some recent studies
propose to enhance the Hawkes process with deep neural net-
works. For example, the neural Hawkes Process [15] was pro-
posed to capture historical influence with LSTM. Self-attention
Hawkes Process [16] and Transformer Hawkes Process [14]
were proposed to investigate the temporal influence of previous
events with Transformer. The Hawkes process has been widely
applied to numerous domains. For example, in dynamic graph
embedding, Hawkes Process is utilized to study the neighbor-
hood formation process of nodes on dynamic graphs [17], marco
and micro dynamics in temporal network [18], temporal hetero-
geneous dynamic graph embedding [19] and interaction between
nodes on dynamic graph [33]. In recommendation systems,
Hawkes process is used to model the time intervals between
sessions [34] and the evolving purchase interest of users [35].
This paper conduct studies on the influence of historical search
behaviors on current search intent with hawkes process.

III. PRELIMINARIES

In this section, we first formulate our problem, followed by a
definition of our heterogenous search graph and a brief review
of the Hawkes process.

A. Problem Formulation

At first, a formulation of personalized serach is given.
For a user u and the current timestamp t, his/her historical
search behavior is defined asH = {S1, S2, . . .St−1}. HereSt′ =
{qt′ , Dt′ } denotes the historical search behavior at the previous
timestamp t′, which contains the query qt′ and the document
list Dt′ = {d1, d2, . . .} returned by the search engine, including
both the clicked and the non-clicked documents.

Given a user u′s historical search behavior H , a current query
q and a candidate document list D returned by the search engine
at t, our goal is to predict a relevance score p for each document d
in the return list D, which measures the personal preference of u
to d. The final search results exhibited to the user are reranked so
that the document with a higher score is given a higher priority.

B. The Hawkes Process

The Hawkes Process is a kind of temporal point process
which models the self-excitation effect of historical events in
a continuous time space. Self-excitation assumes that historical
events excite the occurrence of events with the same type. This
excitation effect can be modeled by the conditional intensity
function. Assuming there are only one type of events, the con-
ditional intensity function of Hawkes process is defined as:

λ(t) = μ+
∑

(v′,t′)∈Ht

κ (t− t′) , (1)

where μ ≥ 0 is a history independent parameter called base
intensity. Ht is the history set before t, v′ and t′ represents

each historical event and it’s occurrence time. κ is the kernel
function representing the time decay effect, which is usually an
exponential function:

κ(t) = exp(−γt), (2)

where γ is the parameter that controls the decaying speed of
intensity.

The Multivariate Hawkes process: If the event sequence
encompasses various types of events, Hawkes process can be
extended to multivariate Hawkes process, which has the property
of mutual-excitation. The mutual-excitation effect assumes that
historical events could excite the occurrence of different types
of events. The conditional intensity function of multivariate
Hawkes process is defined as:

λx(t) = μx +
∑

(v′,t′)∈Ht

αi,jκ (t− t′) (3)

where event x belongs to event type i and v′ belongs to event
type j, αi,j is the excitation rate of event type j to event type i.

C. Definition

The Heterogeneous graph: Let G = {V, E , φ, τ} be a hetero-
geneous graph, where V and E denotes the set of nodes and
edges, respectively. φ(v) → A is a mapping function which
maps nodes to node types and τ(e) → R maps edges to edge
types.

A heterogeneous graph G is a heterogeneous search graph
if there are three types of nodes in the graph, which are users
(U), queries (Q), and the clicked documents (D). Among these
three types of nodes are four types of relations, which are user-
query (issue), user-document (click), query-document (match),
and user-user (similar), respectively.

IV. THE PROPOSED METHOD

The proposed heterogeneous graph based Hawkes process
model, abbreviated as HGHP, is comprised of three key com-
ponents. First, we construct a heterogeneous search graph to
represent the historical search behaviors. Second, a hetero-
geneous graph neural network based model is applied to the
constructed heterogeneous graph to learn the representation of
search behaviors. Third, equipped with the representations of
search behaviors, we propose a method based on multivariate
Hawkes process to model the dynamic search intent based on
long-term and recent search behaviors. The overall architecture
of HGHP is illustrated in Fig. 1.

A. Heterogeneous Search Graph Construction

The heterogeneous search graph is constructed based on
users’ historical search behaviors. As we mentioned above, there
are three types of nodes and four types of edges in the graph. For
each user u, we first add the user u, the queries and the clicked
documents in the search history to the graph. Next, we add edges
between these nodes, where the user-query edge represents the
user once issued such query in the search history, the user-
document edge represents the user once clicked the document,
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Fig. 1. The overall architecture of our HGHP model. First, a heterogeneous graph is constructed to represent historical search behaviors. The query-specific
embedding of search behaviors is generated by a heterogeneos graph neural network, whose parameter is query-specified by affine transformation. Multivariate
Hawkes process is then adopted to modeled the influence of long-term and recent historical behaviors of the user. λd|u is the conditional intensity that represents
the preference of u to a candidate document d.

and the query-document edge represents the document is in the
returned list of the query. Note that the edges are unweighted,
if a document is clicked multiple times, there will be multiple
edges between two nodes.

We also add edges between two similar users into the het-
erogeneous search graph (i.e., user-user edges). For a user u in
the heterogeneous search graph, we first find the top-k similar
users ofu in terms of a newly-defined meta-path based similarity
metric [36]. And then, we add the edges between u and each of
its top-k similar users into the heterogeneous search graph. We
mainly consider joint click behaviors to measure the similarity.
First, for each document in the graph, we select users who clicked
the same document and add these users to the candidate similar
users list. Then, we compute the similarity between two users
in the candidate similar users list. Here the similarity is defined
based on a concept of meta-path [36] in the heterogeneous graph.
The meta-path is a predefined composite relation between two
node types. In our heterogeneous search graph, the node type
sequence user-document-user can be regarded as a meta path,
which semantically represents a joint click behavior between
two users. A node sequence p that follows one specific meta
path P is a meta-path instance. Based on these two concepts,
our similarity metric between two users is computed by:

sim(x, y) =
2×∑mxy

i=1
1

sum(pi
xy)∑mxx

i=1
1

sum(pi
xx)

+
∑myy

i=1
1

sum(pi
yy)

, (4)

where mxy represents the sum of meta-path instances between
x and y, and pixy is the ith meta-path instance between x and y.
sum(pixy) is the total click count of the jointly clicked document
(intermediate node) of pxy by all users in the dataset. For each
user, we rank the candidate users according to the proposed
similarity metric and keep only the top-k similar users in the
candidate similar user list.

Note that the difference between our method and the original
meta-path method PathSim [36] is that we consider the total
clicks of the intermediate nodes (documents). The reason why
total clicks are considered is that there are some cases PathSim
may be unreasonable in the search scenario. For example, the
joint click of some common documents or websites such as
“Google.com” should not be interpreted as having similar search
interests while the joint click of some less popular documents
should represent a higher probability of having similar search
interests. As a result, we quantify the popularity of a document
by the total click times of the document.

B. Search Behavior Representation Learning

To learn representations of the nodes in the heterogeneous
search graph, an initial embedding is required. For queries and
documents, Word2vec [37] is adopted to generate the initial
embedding according to the content of the queries and the title
of the documents. For users, we simply take the average of the
embedding of the issued queries and the clicked documents in
the search history as the initial embedding.

The key to predicting search interest is to govern the influence
of search behaviors in the past. However, historical behaviors
often contribute differently to search intent with respect to (w.r.t.)
the current query, which motivates us to devise a query-specific
learning method for search behavior representation learning.
To be more specific, we want the representation of historical
behaviors to be unique w.r.t. the current query q. The merit of
such design is that not only the semantics of behaviors but also
their relations to the current query can be considered, which
better benefits search intent modeling. Our method is inspired
by the Hypernetworks [38] which includes a primary network
and a secondary network. The secondary network is used for
generating parameters for the primary network.
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Specifically, the primary network in our method is a hetero-
geneous graph neural network [39] for embedding the hetero-
geneous search graph. The secondary network is composed of
fully connected neural networks which generate query-specific
parameters for the primary network. The query-specific pa-
rameters contain two types of parameters, which are scaling
parameterβ and shifting parameterγ. Affine transformation [40]
is performed on the parameters of the primary network based on
these scaling and shifting parameters. Thus, the primary network
can fit the current query.

The scaling and shifting parameters are computed by:

βW
q = FCLW

β (eq) , (5)

γW
q = FCLW

γ (eq) , (6)

βa
q = FCLa

β (eq) , (7)

γa
q = FCLa

γ (eq) , (8)

where eq is the embedding of query q, and the superscript W
and a of FCLs denote that they are generated for the parameter
W and a of the primary network, respectively. W is the feature
transformation parameter matrix, while a is the parameter for
computing attention weights. To make the primary network
query-specific, affine transformation is performed on the origi-
nal parameter W and a:

The representation of the behaviors is generated by the
query-specific heterogeneous graph neural network, which is
re-parameterized withWq andaq . The attention weight between
node i and j is computed by:

αij =

exp(LeakyReLU
(
a

T

q

[
zi||zj ||zeτ(<i,j>)

])
∑

k∈Neighbor(i) exp(LeakyReLU
(
aTq

[
zi||zk||zeτ(<i,k>)

]) .
(9)

Here zi = Wqei and zeτ(<i,j>)
= Wqeτ(<i,k>), where

eτ(<i,k>) is the edge type embedding of the edge type between
node i and node j. ei and ej are the features of node i and node
j. The superscript of layer l is omitted for simplicity. The node
embedding of the next layer l + 1 is computed by the aggregation
of neighbors based on the attention weight computed above:

e
(l+1)
i = σ

⎛
⎝ ∑

j∈Neighbor(i)

αijW
l
qe

l
j

⎞
⎠ , (10)

where Wl
q is the linear transformation of the feature and σ is

the sigmoid activation function.
By the heterogeneous graph neural network, we can obtain the

node embeddings of the heterogeneous search graph. We take
the node embedding of a target user u, the node embedding set
of their queries and their clicked documents, denoted as eu, Equ

and Edu
, respectively. We regard each historical query and click

ofu as a distinct behavior, whose representation is the element of
Equ andEdu

. CombiningEqu andEdu
forms a behavior setStu =

Equ ∪ Edu
. We arrange these behaviors in chronological order,

and append the timestamp w.r.t. each behavior to form a behavior
sequence Ht

u = {(ehi
, ti)}mi=1, where ehi

∈ St
u and m = |Squ |.

Based on the behavior sequence, we can model the influence of
long-term and recent behaviors using the multivariate Hawkes
process to predict the current search intent. Below, we detail our
multivariate Hawkes process modeling method.

C. Modeling Search Behavior With Multivariate Hawkes
Process

Based on the historical search behaviors, we propose to pre-
dict the current search intent with multivariate Hawkes process.
The key point of our approach is to predict the preference of
u to each candidate document d with the conditional intensity
function.

Specifically, given a user u, u′s historical behavior sequence
Ht

u, and the current query q at timestamp t, the conditional
intensity function for each candidate document d is defined as:

λd|u = μu,d +
∑

(hi,ti)∈Ht
u

αd,hi
κ(t− ti). (11)

The conditional intensity function consists of two terms, the
first term μu,d is the base intensity, which denotes the influ-
ence of long-term behavior. We define it as the cosine simi-
larity between candidate document d and u’s long-term search
behavior eu:

μu,d = cosine(eu, ed). (12)

Wq = βW
q �W + γW

q , (13)

aq = βa
q � a+ γa

q , (14)

where � denotes the Hadamard product.
The second term is the summation of the effect of historical be-

haviors.αd,hi
is the excite rate deciding to what extent historical

behavior hi excites the behavior of clicking candidate document
d. We argue that αd,hi

should not only be determined by the
relevance between hi and d, but also the relevance between
hi and current query q. For example, if a user issues a query
“sweet apple”, the excitation effect of a document relevant to
fruit such as “eatapples.com” should be much stronger than that
of “Apple.com”. Therefore, we calculate αd,hi

as follows:

αd,hi
= wq,hi

cosine(ed, ehi
), (15)

where

wq,hi
=

exp(cosine(eq, ehi
))∑

(ehj
,tj)∈Ht

u
exp(cosine(eq, ehj

))
. (16)

Since cosine(ed, ehi
) can be positive or negative, historical

behaviors may have excitation effects or inhibition effects on
future behaviors.

The kernel function is an exponential function modeling the
time decay effect of excitation:

κ(t) = exp(−θt), (17)

where θ can either be a predefined hyperparameter or a learnable
parameter.

An intuitive illustration of how the influence of long-term
and recent behaviors are modulated is shown in Fig. 2. The
influence of long-term behavior represents the user’s stable
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Fig. 2. An intuitive illustration of how dynamic influence of long-term and
short-term behaviors are modulated.

interest, such as his profession, while the influence short-term
behavior represents recent search interests. The preference of
a user to a document is the aggregation of these two kinds of
influence.

D. Search Result Re-Ranking

In the above section we modeled the dynamic search intent of
user based on Hawkes process, here we introduce how to obtain
the final re-ranked search results.

First, given the initial representation of the current query qu,
the condition intensity λd|u is directly adopted as the preference
of u to d based on the current search intent. Second, similar to
existing works [4], we also collect ranking features according
to [11], which are aggregated by an MLP to a similarity score pr.
The final similarity score is the aggregation of these three kinds
of similarity scores. We concatenate these scores and adopt an
MLP to compute the final score for each candidate document d:

p = tanh
(
MLP

(
pq, λd|u, pr

))
, (18)

where tanh denotes the tanh-activation function.
We make use of a loss function as used in [28] to train our

model. The training data is composed of pairs of documents,
including a positive document (clicked) and a negative document
(non-clicked). Δ is the value change of MAP (Mean Average
Precision) when exchanging the positions of two documents.
The loss function is defined as:

L = |Δ| (−p̂ij log(pij)− p̂jilog(pji)) , (19)

where p̂ij is the true label that document i is more relevant than
document j, and pij is the predicted probability that document
i is more relevant than document j. Finally, we use the Adam
optimizer to optimize the parameters of the model.

E. Complexity Analysis

Time complexity: The time complexity of heterogeneous
graph neural network is O(lN2), where l is the maximum
number of layers, and N is the number of nodes in the het-
erogeneous search graph. The time complexity of the Hawkes

TABLE I
STATISTICS OF DATASET

process is O(h), where h is the maximum number of back-
ground behaviors of each user. Consequently, the overall time
complexity of training HGHP is O(|E|PlN2), where |E| is the
number of epochs, and P is the number of users. To circumvent
the substantial computational cost that could arise due to a
large N , we only select most recent hs behaviors to construct
the heterogeneous search graph. Hence, N can be regarded as
a constant, and the time complexity is linear to the number
of users.

Space complexity: The space complexity for storing the adja-
cent matrix of graph isO(N2). Additionally, the space complex-
ity for storing node and edge embeddings is O(NFn + EFe),
where Fn and Fe are the maximum dimensionality of node
embeddings and edge embeddings, respectively, during forward
propagation. The space complexity for the learnable parameters
in heterogeneous graph neural network is O(lF 2

eH). Here, H
is the number of attention heads. The space complexity for
the learnable parameters in affine transformation is O(F 2

e ).
Furthermore, the space complexity for the learnable parameters
in the Hawkes process is O(hs). Consequently, the overall
space complexity of HGHP in one forward propagation of
O(N2 +NFn + EFe + lF 2

nH + F 2
n).

V. EXPERIMENTS

In this section we conduct extensive experiments to evaluate
the effectiveness of the proposed method, which is named as
HGHP. We use ”performance” to denote the ranking quality
of search results. Our experiments are designed to answer the
following five questions.

Q1: Could HGHP achieve better performance compared to
the state-of-the-art (SOTA) personalized search methods?

Q2: What do major components of HGHP contribute to the
performance?

Q3: How does the number of similar users on the heteroge-
neous search graph affect the performance?

Q4: Does heterogeneous graph modeling perform better than
homogeneous graph modeling?

Q5: How important is each type of edge in the heterogeneous
search graph.

A. Experimental Setup

Datasets: We use three real-world datasets in our experiments:
AOL [41], [42], WeChat and Amazon [43]. The statistics of the
datasets are shown in Table I. A brief introduction of the datasets
is as follows.

The AOL dataset, introduced by [41], [42], is a widely rec-
ognized and publicly accessible dataset for personalized search
studies. This dataset comprises user click data collected from
March 1, 2006, to May 31, 2006. Each data entry in the AOL

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on May 05,2025 at 06:22:46 UTC from IEEE Xplore.  Restrictions apply. 



408 IEEE TRANSACTIONS ON BIG DATA, VOL. 11, NO. 2, MARCH/APRIL 2025

dataset includes an anonymized user ID, a timestamp of the
search, a query, a clicked URL, and a rank position. The dataset
used in our study was constructed by [41] and [42], and its
candidate documents are ranked by the BM25 algorithm [44].
The candidate document list (Dt′ ) contains 5 items in the training
and validation sets and 50 in the testing set. The data from the
initial five weeks (35 days) is employed as background behavior
to identify similar users, while the remaining data is divided in
a 6:1:1 ratio for training, validation, and testing, respectively.

The Wechat dataset is collected from Wechat, the largest
social platform in China. This dataset was collected from the
historical log of the search engine embedded in Wechat, encom-
passing the search behavior of 101,852 users from September
4, 2021, to October 19, 2021. The candidate document list
encompass 20 items ranked by the search engine. The data from
the first 30 days is used as background behavior to identify
similar users on a heterogeneous search graph. The remaining 15
days’ data is partitioned in a 6:1:1 ratio for training, validation,
and testing.

The Amazon dataset [43] is a widely utilized dataset for
personalized product search studies, comprising user reviews on
purchased items. For our evaluation, we select the Electronics
subset. In this context, we interpret purchase behavior as click
behavior and construct a candidate document with a length of
10 for each query. The ranking of candidate documents follows
the same methodology as in the AOL dataset. The data from the
initial five years serves as the background behavior, while the
remaining data is divided in a 6:1:1 ratio for training, validation,
and testing. It worth noting that this dataset does not provide the
partition of sessions.

Baselines: We select 7 methods for personalized search as
our baselines, which include several SOTA methods. P-Click.
[1] It utilizes the re-finding behavior of users. The clicks under
the same query of the same person are recorded to re-rank the
current query.

PSGAN: [2] It employs generative adversarial networks to
train search models. A generator is adopted to generate the
distribution of relevant documents and a discriminator is used
to distinguish the relevant documents.

HRNN: [27] It uses hierarchical recurrent neural networks
to model the search sequence. Attention is used to generate
the dynamic query-aware representation of user profiles for
reranking.

RPMN: [45] It uses the re-finding behaviors in personalized
search. Three types of memory networks are devised to iden-
tify query, document, and session based re-finding behaviors,
respectively.

PEPS: [5] It employs personal word embeddings on person-
alized reranking, which are trained from user’s history, it also
takes account of global word embeddings. The embeddings are
used for the representation of the documents and queries in the
personalized search model.

HTPS: [4] It uses two hierarchical models containing high-
level and low-level transformers which are the query disam-
biguation model and the personalized language model. These
two models are combined with a gate join for the representation
of queries.

PSSL: [7] It is a self-supervised contrastive learning model.
It extract four kinds of contrastive pairs from search histories,
which are used to pre-train the encoders. Pre-trained models are
then fine-tuned on the personalized reranking stage.

Parameters and Settings: The initial embedding of queries
and document titles is generated using a pre-trained Word2vec
model [37] for a fair comparison with previous personalized
search methods [4], [5], [7]. The number of dimension of initial
embedding, determined through experimentation with values in
{50,100,200,300}, was set to be 100 to strike a balance between
performance and computational trade-offs. Both the hidden and
output dimensions of the model were set to 64. γ is a predefined
parameter because it performs better than the learnable setting.
We configure it to 0.001,0.001 and 0.1 on AOL, Wechat and
Amazon respectively. Given the differing time spans across these
datasets, normalization of timestamps was applied by setting the
first timestamp in the training set to 0 and the last to 1 on three
datasets. The learning rate was determined through a search in
the set {0.0001, 0.001, 0.01} and set to 0.001 as it yielded the
optimal performance. The batch size of 64 was selected. To
balance performance and computational trade-offs, the number
of similar users was set to 10, 15, and 10 for the AOL, Wechat,
and Amazon datasets, respectively. For each user, we select 20
most recent historical queries to construct their heterogeneous
search graph. The number of heads of attention mechanism
is set to 8 for the consistency with previous studies [8], [13],
[46]. The model converges in about 5-10 epochs of training. All
experiments are performed on a Nvidia Tesla V100 cluster.

B. Evaluation Metrics

For result evaluation, we select three commonly-used metrics
MAP (mean average precision), MRR (mean reciprocal rank),
and P@1 (precision@1) to measure the ranking quality of
baselines and our method. We regard the clicked documents
as the relevant and non-clicked documents as the irrelevant. AP
(Average Precision) is defined as

AP =

∑N
i=1 Precision@i× hit(i)

Number of clicked documents
(20)

where N is the length of the returned list, Precision@i denotes
the top-n precision, hit(i) is whether the document at position i
is clicked, and MAP is the mean of AP of all the searches in the
test data. RR(reciprocal rank) is computed by

RR =
∑ 1

ranki
(21)

where ranki is the the position of the first clicked document in
the returned list, and MRR takes the mean of all the searches
in the test data. P@1 is defined as the proportion of documents
ranked at position 1 be clicked.

C. Experimental Results

Overall Performance (Q1):The overall experimental results
are shown in Table II. From Table II, we can obtain the following
observations.
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TABLE II
RANKING RESULTS OF HGHP AND BASELINES ON THREE DATASETS

First, HGHP outperforms all other baselines on three datasets.
For example, on AOL, HGHP outperforms the SOTA method
PSSL by 1.06% on MAP, 1.22% on MRR, and 4.35% on P@1.
On WeChat, our method outperforms the original ranking by
10.16% on MAP, and outperforms PSSL by 2.48% on MAP. On
Amazon, HGHP outperforms SOTA method PSSL by 2.96%
on MAP, 2.94% on MRR and 4.75% on P@1. These results
confirm that our heterogeneous graph-based Hawkes process
is an effective way to enhance the quality of personalized re-
ranking.

Second, the improvement on AOL over the original ranking
is more significant than that on WeChat. The reason could be
that the original ranking result of AOL is generated by BM25,
while the original ranking result of WeChat is generated by
a highly-optimized ranking algorithm deployed in WeChat .
The experimental results also indicate that on AOL dataset, the
improvement on P@1 is more significant compared with that on
other metrics. The reason could be that on AOL dataset users are
more likely to click the historically-clicked documents, which
are more likely to be ranked at position one by our method. On
Wechat and Amazon dataset, users are more likely to explore
new documents, thus ranking the clicked documents at the first
position could not result in similar performance improvement.
Besides, there are several other subtle differences between web
search and mobile search such as click preference [47], which
make the search behavior on WeChat slightly different from that
on AOL. Despite these differences, our methods can outperform
existing personalized search methods on three datasets, validat-
ing the effectiveness of our method.

Third, the improvement over the SOTA methods is more pro-
nounced on Amazon dataset compared to the other two datasets.
The reason for this phenomenon may be the absence of sessions
in the Amazon dataset. Because the SOTA methods relies on
modeling short-term interests through session behaviors [4], the
absence of sessions can lead to suboptimal results. Compared
to existing methods, HGHP directly models short-term interests
with the Hawkes Process, and therefore more robust to the ab-
sence of sessions, thus achieving more significant improvement
on Amazon dataset.

Ablation Experiments (Q2): To evaluate the contributions
of each main component of our model, we conduct ablation
experiments on our method, we use ”w/o” to denote removing
respective components from HGHP.

w/o HSG denotes a variant that removes the heterogeneous
search graph and directly uses the original word2vec represen-
tation of queries and documents as the search behavior represen-
tation. The multivariate Hawkes process component is reserved
to model the evolving search intent.

w/o Hawkes is a variant that keeps the heterogeneous search
graph, but removes the multivariate Hawkes process. In this case,
we only calculate the base rate as the search intent and remove the
dynamic features modeled by the multivariate Hawkes process.

w/o Hypernets is a variant that removes query-specific affine
transformation on the parameters of the heterogeneous graph
neural network. Other components of the model remain un-
changed.

The results of ablation studies are shown in Fig. 3. As can
be seen, all variants lead to performance decline compared to
the original HGHP. For example, on AOL , ”w/o HSG” leads
to 4.88% drop on MAP, ”w/o Hawkes” leads to 1.11% drop
on MAP, and ”w/o Hypernets” leads to 0.64% drop on MAP.
On WeChat , ”w/o HSG” leads to 3.41% drop on MAP, ”w/o
Hawkes” leads to 0.88% drop on MAP, and ”w/o Hypernets”
leads to 1.01% drop on MAP. On Amazon, ”w/o HSG” leads
to 3.78% drop on MAP, ”w/o Hawkes” leads to a 2.74% drop
on MAP, and ”w/o Hypernets” leads to 1.79% drop on MAP.
The results indicate that each component is beneficial to the
performance. The proposed heterogeneous graph based Hawkes
process integrating three components achieves the best perfor-
mance.

It can also be observed that that the ”w/o HSG” variant re-
sulted in a poorer performance on the AOL and Amazon datasets
compared to Wechat. This result suggests that the contribution
of the heterogeneous search graph is more significant on these
two datasets. The potential reason for this phenomenon could
be that the text of queries and documents in AOL and Amazon
are manually established [41], [42], [43], which may introduce
some noise and bias. The heterogeneous search graph leverages
collaborative signals in search behaviors, thereby mitigating the
impact caused by this noise and bias. On the other hand, the text
of queries and documents on WeChat is directly crawled from the
search engine, making it more accurate. These results confirm
the advantage of the heterogeneous search graph in learning
more accurate representations.

Impact of the Number of Similar Users (Q3): One of the
merits of the heterogeneous search graph is that it can easily
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Fig. 3. Results of ablation experiments.

Fig. 4. The experimental result of different number of similar users three datasets. ΔMAP,ΔMRR, and ΔP@1 represents the increase on three metrics
compared with the SOTA method PSSL, respectively. (d) shows the the time cost of processing a batch during the training phase.

utilize similar users. Here we study the impact of the number
of similar friends on the performance. To this end, we construct
heterogeneous search graphs with different numbers of similar
users. The number of similar users increases from 0 to 40 with a
step of 5. The results on two datasets are shown in Fig. 4. From
Fig. 4, we have the following observations.

First, on all datasets, the performance increases when the
number of friends increases from 0 to 5, indicating that adding
similar users to the heterogeneous search graph can improve
the performance. The improvement on AOL is more significant
than on Wechat . The reason could be that the historical search
behavior on AOL is more limited than that on Wechat. Adding
similar users on AOL could better alleviate the data sparsity
problem.

Second, the optimal number of similar users is 25,15 and 10 on
AOL , Wechat and Amazon, respectively. The performance does
not consistently improve as the number of users increases. The
reasons could be two-folds. First, the order of adding similar
friends is based on the similarity to the target user. When the
number of similar users increases, the newly-added users are
the least similar to the target user, which may contribute less
compared to the users added earlier. This diminishing marginal
effect could limit the effect of adding more similar users. Second,
too many similar users may incur noises, which is harmful to
the performance.

Third, the performance of HGHP on Amazon consistently
declines when the number of similar users exceeds 15. This may
be attributed to the fact that the products in the Amazon dataset
are predominantly related to electronics, leading to a more con-
centrated topic compared two other two datasets. A high number
of similar users could potentially weaken the discriminative

ability of user interests, resulting in a more pronounced impact
on performance compared to the other two datasets.

Discussions: Although incorporating similar users can im-
prove the performance, it also incurs computation overhead. The
time cost of processing a batch with respect to the number of sim-
ilar users are shown in Fig. 4(d). It can be observed the time cost
increases linearly with the number of similar users. It can also be
observed from Fig. 4 that the improvement is marginal when the
number of similar users exceeds 5. Therefore, considering the
trade-offs between performance and computational overheads,
selecting 5 similar users on AOL and Wechat, and 5-10 similar
users on Amazon is sufficient to achieve comparable results to
those obtained with optimal numbers.

Comparison to Homogeneous Graph Modeling (Q4): To
demonstrate the advantage of the heterogeneous graph, we con-
vert the heterogeneous search graphs to homogeneous graphs,
which assumes the edges on the graph are of the same type. Then,
we utilize two homogeneous graph neural network, GCN [48]
and GAT [46] to learn the node embeddings of the graph. We
denote such a method using GCN as w/ GCN, and using GAT
as w/ GAT. Other components of the model remain unchanged.
We compare the performance of two homogeneous graph based
variants with our original HGHP. The results are reported in
Table III.

As shown in Table III, two homogeneous graph based methods
achieve inferior results compared to HGHP on all datasets.
Specifically, GCN yields the worst performance, indicating ne-
glecting the weights of nodes in the heterogeneous search graph
leads to a significant loss in performance. GAT, by calculating
node weights to aggregate messages from neighbors, achieved
better performance than GCN. HGHP explicitly considers the
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TABLE III
COMPARISON TO HOMOGENEOUS GRAPH MODELING

Fig. 5. The distribution of attention weights on AOL dataset (left), WeChat
(middle) and Amazon dataset (right).

types of edges and has achieved better performance than GAT,
indicating that modeling the heterogeneity in search behaviors is
important to enhancing the effectiveness of personalized search.

Importance of each relation (Q5): From Q4 we find that
considering the heterogeneous relations is of benefit. In this
subsection we further investigate how important is each type of
relation. As we mentioned above, there are four types of relations
on the graph, including user-query (U-Q), user-document (U-D),
query-document (Q-D) and user-user (U-U).1 Specifically, we
visualize the attention weights of these four types of relations,
and display their distribution in a box plot.

Fig. 5 shows the distribution of attention weights on three
datasets. It can be observed that on all datasets, the edges
of relation ”user-document” has the highest attention weights
among all relations, suggesting that clicking behavior plays the
most important role. The attention weights of ”user-document”
is higher on AOL dataset than that on WeChat dataset, the reason
could be re-finding behaviors is more frequent on AOL dataset
and users are more likely to click previously clicked documents,
which makes the model pay more attention to the click behavior.
The attention weights of user-user relation is the second highest
on AOL and Wechat datasets, suggesting that similar users are
useful information for modeling search behaviors. The attention
weights of the U-Q relation is relatively low on AOL and Wechat
but higher on Amazon, the reason could be queries on AOL and
Wechat are often ambiguous than that on Amazon. Hence, the
contribution of U-Q relation is more pronounced on Amazon
than on the other two datasets.

1There are actually eight types of relation on the graph since we regard reverse
edges as different relations, however, we found that the weights of reverse edges
are similar to the original edges, so we omit them on the figure for brevity.

VI. CONCLUSION

In this work, we propose a new personalized search method
which uses a novel heterogeneous graph based Hawkes process
to model user’s search behaviors. Specifically, we propose a
heterogeneous search graph to represent search behaviors. A
query-specific heterogeneous graph neural network model is
then developed to learn the embeddings of users’ search be-
haviors. With those embeddings, the dynamic influence of users’
long-term and recent historical behaviors is modeled by the mul-
tivariate Hawkes process. The final search result personalization
is achieved by re-ranking the documents based on the dynamic
search intent. Extensive experimental results on two real-world
datasets demonstrate the effectiveness and superiority of the
proposed method.

The potential limitations of this paper are too-folds. First,
the heterogeneous graph neural network model may be com-
putationally expensive when dealing with an excessively large
heterogeneous search graph. Therefore, a promising avenue for
future research involves developing sampling strategies to select
informative historical behaviors, thereby mitigating computa-
tional costs. Second, there may be instances where the title
of a document does not contain relevant keywords, potentially
leading to inaccurate initial features. A possible solution for this
issue could involve the use of collaborative filtering to identify
similar documents, and generating additional features for the
document based on the features of these similar documents.

VII. ETHICAL IMPLICATIONS

To develop personalize search methods, we have collected
user’s search log from search engine. To ensure user privacy
and data security, all personally identifiable information and
user identities in the data we used have been replaced with
pseudonyms with data anonymization techniques.
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